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Abstract

An optimization system, which combines a particular boundary element method and a modified Levenberg—
Marqardt method, and which can be used to determine material properties of a multi-layer medium from the specified
or observed displacements, is presented in this paper. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, more and more thin layered structures, such as thin films in electronic devices, sensors
and actuators in smart materials and coatings on machine components for wear resistance, corrosion in-
hibition, or friction reduction, are being utilized in many industries. In order to analyze the mechanical
behaviors of such layered structures, the mechanical properties of such layered materials had to be in-
vestigated at first. That is why the depth-sensing indentation test has been widely used in present days. With
the indentation tests, one of the procedures for determining the material properties will finally come down
to the analytical or numerical modeling of an elastic contact problem of a homogeneous body and a multi-
layered structure. The pioneer work of the modeling was done by Loubet et al. (1984) using the elastic
solution to a problem of a rigid cylindrical punch indenting a homogeneous half space. After that, Doerner
and Nix (1986) extended the idea of Loubet et al. to the case of indentation of thin films deposited on
substrates, King (1987) performed an integral equation analysis and modified the formula proposed by
Doerner and Nix to fit his numerical results, and Shield and Body (1989) presented a solution of the
problem of an axisymmetrical rigid punch indenting a layered half space by using integral transforms.
Another integral equation approach for the axisymmetrical contact problem involving an elastic layer ei-
ther in frictionless contact or perfectly bonded to an elastic half space was presented by Yu et al. (1990).
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Subsequently, an important work was done by Gao et al. (1992), which employed a moduli-perturbation
method to construct a closed-form, first-order-accurate solution for the contact compliance of a nonho-
mogeneous medium with a layered or continuously varying moduli in the depthwise direction, and the
method presented in this work is now being used to determine the mechanical properties from micro- and
nano-indentation data (Swain, 1998; Menick et al., 1999; Tsui and Pharr, 1999). Apart from the above-
mentioned semi-analytical studies, the finite element method were also used to indentation test modeling by
Bhattacharya and Nix (1988) and Laursen and Simo (1992).

Since the inverse problems may be designed to determine the unknowns from the specified or the mea-
sured system response, the present work treats the determination of the material properties of a multi-
layered medium with the axisymmetrical punch indenting test results as an inverse problem, and then,
presents a boundary element approach for this inverse problem. Compared with direct problems, the inverse
problems perform essentially in backward way. We have the output, but we want the input. Our goal is to
match the numerical results and measured results or specified data as closely as possible by numerical
simulation, and then to estimate the some characteristics of specified materials. For inverse problems, the
well posedness, which includes existence, uniqueness and continuity, is more important. The uniqueness of
the solution is of greatly concerned because the actual physical conditions can be represented by only one
solution. We can obtain more reasonable results from a well-posed inverse problem than an ill-posed
problem. If suitable constraints are chosen for an ill-posed inverse problem, the well posedness of the
problem will be satisfied (Trujillo, 1997). Generally, the process to solve the inverse problems may combine
an optimization scheme, where a cost function determined by somehow comparing the known output and
the numerical results must be minimized. Therefore, the process for solving this inverse problem comes down
to finding the best method for minimizing the cost function. The minimizing schemes, such as the least
squares methods, regularization and so on, are frequently used in optimization process of the inverse
problems.

The boundary element method is a powerful alternative numerical technique other than the finite ele-
ment method (Becker, 1992). Up to now, some literature on the solution of inverse problems has been
devoted to the usage of boundary element methods as a numerical tool to solve the inverse problems.
Chiang and Dulikravich (1986) used a boundary element method to calculate the size and the location of
circular coolant flow passages in a composite turbine blade from prescribed temperature and heat flux
distribution on the boundary. Zabaras et al. (1989) calculated surface traction from measurements of in-
ternal displacements using boundary element method with an assumption of elastic material behavior.
Tanaka and Yamagiwa (1989) solved for the shape of internal defect using eigenfrequency data by
boundary element method.

The present work addresses a problem for determining material properties of a multi-layer medium from
the specified or observed displacements. The problems is physical and geometric axisymmetric. To avoid
element discretization at layer interfaces and re-mesh during the optimization procedure, a particular
boundary integral equation for the multi-layered media, which was presented by Wang and Ishikawa (1999,
2000), is incorporated in the optimization process. A modified Levenberg—-Margardt method (Ravi and
Jennings, 1990) is adopted to match the displacements of a designed model and the results of the particular
boundary element.

2. Problem definition and the boundary element approach

Herewith, we consider a large multi-layered media, the upper surface of which is pushed by a small
homogeneous axisymmetric body, shaped as circular cylinder, cone, sphere etc. The prototype of this
problem may be found in micro-indentations and geo-technique engineering. It is assumed that the multi-
layered media may have N different layers, and the material in each layer is homogeneous, isotropic and
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Fig. 1. Model for analysis.

linear elastic. It is also assumed that the prescribed loads are axisymmetric too. The model of this problem
is depicted in Fig. 1, where 4; (i = 1,2,...,N) is the height of interface or top surface.

Obviously, the mechanical behaV10r of each layer is governed by Navier’s equation and constitutive law
in cylindrical coordinate, and the mechanical behavior of the indentation can be described as a contact
problem. Here, the boundary element method is used to analyze the contact problem.

If ordinary boundary element method, which uses Kelvin’s solution as the fundamental solution, is
adopted to analyze this contact problem of multi-layered medium indented by a punch, elements discret-
ization must be taken to each interface between any two adjacent layers in multi-layered zone. That will
increase the number of the freedom of system equations rapidly, especially for the case of the layer
thickness varying in a large scale. Moreover, element re-mesh should be usually needed during the opti-
mization procedure if the ordinary boundary element method was used. Therefore, the advantage of using
boundary element methods may be decreased. In the present study, a new boundary element method is
employed to simulate the contact behaviors. In the procedure of boundary element calculation, two dif-
ferent boundary integral equations are adopted for homogeneous region, which is occupied by indenter,
and multi-layered region, respectively. For the former region, Kelvin’s solution for elasto-static axisym-
metric problem acts as the fundamental solution. For the latter region, a new boundary integral equation,
proposed by the authors for multi-layered elasto-static axisymmetric medium, is used. With the new
boundary integral equation, only the top surface in contact area is needed to be discretized into elements
and the re-mesh during the optimization may be avoided. For convenience of symbolism, the homogeneous
region is denoted as domain 4 and the multi-layered region is denoted as domain B.

At first, the boundary element method for domain A is investigated. By using the ordinary boundary
integral equation, discretizing the elements and approximating the boundary data over each element by a
set of interpolating function, the boundary element equations for domain A4 are obtained as

N Ng
Zng;‘+Zng;‘+ZH ZGqA+ZGqA+ZG i=1,2,...,N,+ Ng+ N,
j= j= j=

(1)

where N,, Ng and N, are the number of nodes in the part prescribed by traction, the part prescribed by
displacement and the contact part of the boundary, respectively. The vectors, uf and q;i‘, are the dis-
placement vector and the traction vector at node j.
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For the domain B, the multi-layered region, by using the Hankel’s transforms and the system matrix
approach, the relationships between the stresses and displacement on the top surface and those on the
bottom surface are given by Wang and Ishikawa (1999, 2000) as

ay(hy) = Ty(hy)a; (0) (2)
and

by (hy) = Byay(hy), (3)

wherE the subscript 1 means the bottom layer and the subscript N means the top layer, matrices, Ty (/)
and By (see Appendix A) are the transferring matrix and

5N(h}V) = (HOJzz(hN)aHlo—zr(hN)vHlur(hN)aHOuz(hN))Tv
by (hy) = (Ha (0, (hy) + ogo(hn)), Ho(0,(hy) — aga(hx)))",

whereby H, (n=1,2,...) is Hankel’s transform defined as

@) =B 700} = [ dr
0
where o is a variable and n =0, 1, 2, .. ..
After applying the inverse Hankel’s transform defined as

10 =, 0} = | " af @)l () d

to Egs. (2) and (3), a relationship between the displacement and stresses on the top surface can be obtained
as

Mr(hN)
= f(Hyo.(hy),Hi0.-(h
(1)) =ttt o 1)
(Wang and Ishikawa, 2000). The right-hand side of the relationship is a vector, the elements of which are
integrals with a semi-infinite interval. Since the stresses on the top surface exist only on the contact area, the
elements are discretized only in the contact area of the top surface of domain B. Finally, the system
equation for the domain B is given as

Ne
W= "H, i=12.. N, (4)
j=1
where N, is just the same as that described in Eq. (1).
In the present study, it is assumed that there is no friction happened during the contact. Thus the contact
conditions can be described as

4 = 4y, (5)
qf = q{) = 0; (6)
= A, )

where a and b denote a contact node pair, which are belonged to domains 4 and B, respectively, » means
normal direction,  means tangential direction and Au“ is the gap between the two candidate contact nodes
a and b.
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Subsequently, the contact problem between a homogeneous body and a multi-layered medium can be
solved by the presented boundary element Egs. (1) and (4) with contact conditions (5)—(7).

3. Optimization process

The estimation of material properties for the present inverse problem may be viewed as optimization
approach. Let u* = (u},u3,...,u},) be the measured or specified displacements and @ = (i, iy, . . . , iiy) be
the calculated displacements, where the subscripts 1, 2, ..., M may mean the different measured or specified
locations in the domains under consideration, or it may mean the load steps. The unknown material
properties are defined in a vector as p = (Ey, h1, Es, hy,...)" . There will be a relationship @ = f(p) between i
and p when boundary element method is employed. Obviously, the relationship behaves nonlinearly.

3.1. The objective function

Our goal is to seek an approach to minimize the error between u* and u, and it may be expressed in
mathematical notation as follows:

min |ju” — al. (8)

The measuring of the error is considered in the Euclidean space in the present work, and the objective
function to be minimized is written as a least squares as:

®(p) = %(u* - ﬁ) (u* - ﬁ)T. 9)

3.2. Constraints

In order to keep a physical meaning during optimization, some constraint conditions must be applied to
the minimization procedure. Based on the physics of this problem, the constraints are expressed as

Cj(l])?(), jzla"'vl’a (10)

where L is the number of constrains and ¢; are the constrain functions. The choice of the constraints will be
discussed later during the numerical analysis. The set of p that satisfies the constraints is called the feasible
region. It is important to maintain the feasibility of the parameters throughout the optimization process. In
order to obtain a reasonable determination, predicted conditions, such as predicted bounds of Young’s
modulus and the predicted geometrical shapes can be considered as constraints. Constrained minimization
problems cannot be solved directly. They must be transformed into unconstrained problems. The fre-
quently used methods to transform a constrained problem to an unconstrained one are the change of
variables, internal penalty function and external penalty function. The change of variables can result in
eccentricity in the objective function (9) and make the convergence more difficult. The external penalty
function approaches to the minimum value from outside, i.e. from the point located in the infeasible region.
Obviously, this method cannot be employed to solve this problem. Hence, internal penalty function is
adopted in the present study. The constraints are incorporated directly in the objective function @*(p) given
as

#(0) = 00) + S50, (1)

where the weighted penalty function, {;, is the inverse barrier function proposed by Carroll (1961) as
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§i(p) = wi/e;(p), (12)

whereby w; is nonnegative weights.
3.3. A modified Levenberg—Marquardt’s method

Starting from an initial feasible guess of parameter p, the modified Levenberg-Marquardt’s method
(Ravi and Jennings, 1990) employs a sequence of corrections to the parameter until the convergence is
achieved, according to some specified criteria. The parameter correction, Ap, at iteration k is calculated
from the following system of equations as

(J<k>rJ<k> 4 AL+ H<k>)Ap(k) _ gt (ﬁ _ u»«)“‘) +g®), (13)

where A is the Levenberg-Marquardt parameter, a nonnegative scalar. J is the Jacobian matrix of &(p),
and I is the identity. Let set r; = &; — u;. The elements of J, g and H are given by

Jiazai”i/apazaﬁ,-/apa, 1‘:17M7 a:17...7n7 (14)
q

g“:_ZaCj/apx, a=1,...,n, (1)
j=1
q

H“/’:Zazgj/apaapﬁa wfp=1,....,n, (16)
j=1

where 7 is the number of the elements of parameter p. If linear constraints are employed, the first and the
second derivatives of the penalty functions, which are used in expressions (15) and (16), can be expressed as

ol;/op, = —(wj/g/z.)acj/ﬁpa, j=1,....L, a=1,...,n, (17)

&, /0p,opy = (2w;/<)) (8¢, /0p.) @cy/Ops), j =1L, \L, 2B =1,....n. (18)

Marquardt (1963) proved that as the Levenberg—Marquardt parameter, A, which determines the di-
rection and the size of the parameter step, Ap, tends to infinity, the direction of the step rotates toward the
steepest descent direction and the step size tends to zero. Therefore, a sufficiently large, positive value
shoulg)be prescribed to A in order to ensure that the step is taken in a descent direction, i.e. ®*(p)*™" <
" (p)".

Although we have the definition of Jacobian matrix J as described in expression (14), we cannot compute
it directly. In the present study, a finite difference approximation of J is used by the present boundary

element with perturbing the parameter at each iteration.
3.4. Solution algorithm

Similarly to the algorithm for the determination of an elastic inclusion in a finite matrix using the finite
element method, which is presented by Schnur and Zabaras (1992), an optimization algorithm that com-
bines the present boundary element method and the modified Levenberg—Marquardt’s method is designed
to determine the elastic properties or thickness of the specified layers. The detailed algorithm is given as
follows:

1. Guess an initial value to the parameter, p’), and the Levenberg—-Marquardt parameters (Marquardt,
1963), A% = 0.01.
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2. Generate boundary element mesh, solve the boundary element contact problem at p© for the displace-
ment, i”, at the measurement locations and evaluate the error functlon o0

3. Set the 1n1t1a1 penalty function welghts (Ravi and Jennings, 1990), w = O OOlc 9 j =1, L. Evaluate
the weighted penalty function, C , 7 =1, L, and objective functlon @0

4. Begin the kth iteration loop

(A) Calculate Jacobian Matrix, J%, by the finite difference approximation with the displacement incre-
ment, Au, which is obtained by the boundary element method with perturbation the parameter p®
(B) Calculate the penalty function derivatives to forrn H"™ and g® using Eqgs. (17) and (18).

(C) Solve Eq. (13) for the parameter increment, Ap*¥), and update the parameter, p**! = p*) 4- Ap®
(D) Solving the contact problem using boundary element method with the new obtained material param-
eters pth.

(E) Evaluate [, j =1, L and objective function, @V

(F) Check if k) < &*®_If false, increase 4 and go to 4(C) If true, continue.

(G) Decrease w; and A.

(H) Check if iteration has converged with criteria (10) |55]/ (y+1pf]) <& (i=1, n,and small e,y > 0). If
false, set k = k + 1 and go to 4(A); If true, stop, the properties are determined as p*

4. Numerical Studies

To test the above-mentioned method, two ideal models about the multi-layered medium indented by the
homogeneous indenters are investigated with the algorithm described in Section 3. The measured or
specified displacements, or the elements of the vector, u, may be the displacements at different location in
the investigated domain produced by the one indenter, or may be the displacement at the same location in
the investigated domain produced by the different indenters. The latter case needs much long time due to
element re-mesh. Therefore, without losing the generality, the former case is chosen in the present nu-
merical test.

4.1. Model A

This model is about a two-layer medium indented by sphere indenter (Fig. 2). The two-layered medium
is placed on a rigid foundation, and this means its bottom surface is simply supported in the view of the
mechanics. The top layer is very thinner than that of the bottom layer. The specified displacement is taken
at a set of points on the top surface of the two-layer medium. The element discretization used in the present
boundary element method is shown in Fig. 3. In order to ensure the accuracy of the computation, the
sphere boundary is divided into 40 quadratic elements, and the candidate contact area and the area

Layer 2: E»,h,
Layer 1: E,h;

Fig. 2. A two-layer medium indented by a sphere body.
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Fig. 3. The boundary element model for analyzing the problem of model A.

including specified points are meshed into 40 quadratic elements only in the present boundary element
method for analyzing the model. The radius of the cross of the sphere indenter is » = 2.0 um and its
Young’s modulus is 1000 GPa. The parameters to be determined may be Young’s modulus and the
thickness of the two layers. Two cases are investigated as follows:

The first case: Young’s modulus of the two layers are known, and p = (h, 4,),

The second case: all the parameters of the two layers are unknown, and p = (h,E}, ks, E,).

The true value of the parameter is p =(206 GPa, 9.2 um, 150 GPa, 0.2 pm). To ensure the uniqueness of
the solution, 10 constraints are designed as:

a=E20 c=E"—-E =20,
c3=E,20 c4=E™ —E, >0,
cs=h 20 cg=h""—h =20,
c1=mh=20 cg=mn"—h=0,

co=h—h=20 co=h—h —h =0,

where ET* = EF* =300 GPa, h =i =94 ym and A9 = 2.0 pm. All of the above constraints are
linear constraints. Constraints, ¢, ¢3, ¢s, ¢7, keep Young’s modulus and the thickness always positive,
constraints, ¢,, ¢4, Cg, cg, force Young’s modulus and the thickness to be in some limited ranges. For the first
case, constraints, cs, ¢, 7, cg, o and ¢y, are employed. As for the second case, all constraints are valid in
analysis. In all cases, the load condition is to prescribe a displacement, 0.01 um, to the top point of the
sphere, and the convergence criterion are y = ¢ = 1.0 x 107*. The model is first analyzed by the conven-
tional boundary element method with the true parameter p =(206 GPa, 9.2 pum, 150 GPa, 0.2 um). The
distribution of the normal displacement on the top surface of the two-layer medium is shown in Fig. 4, and
a large view of that distribution in the neighborhood of the axis is depicted in Fig. 5.

Totally 20 points are specified and they locate on the top surface of the two-layer medium. Their radial
coordinates and normal displacements, which are the elements of the vector u* = (uj,us, ..., u5,), are given
in Table 1.

During the optimizing procedure, the displacements at the specified points, which are the elements of the
vector, U = (i, i, .. ,Hy), are computed by the present boundary element method. Different initial pa-
rameters are tested. The ideal results are described as the following:

The first case: the final initial values prescribed to the parameter are p©) = (250 GPa, 9.2 um, 250 GPa,
0.2 pm).

The perturbing value of the parameter, or the interval, used by the finite difference in calculating the
Jacobian matrix, J, is given as
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Fig. 4. The distribution of displacement on the top surface of the two-layer medium.
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Fig. 5. A large view of Fig. 4 in the neighborhood of R = 0.

Table 1

The radial coordinates (um) and normal displacements (um) of the specified points
R coordinate Displacement R coordinate Displacement
2.91E-03 —9.9213192E — 03 2.04E — 01 —1.8212214E — 03
1.26E — 02 —9.8837104E — 03 2.34E - 01 —1.7263844E — 03
3.01E—02 —9.6975423E — 03 2.64E — 01 —1.5409463E — 03
4.07E —02 —9.5087773E — 03 3.31E-01 —1.2157446E — 03
6.98E — 02 —8.7046897E — 03 3.69E — 01 —1.0867756E — 03
8.82E — 02 —7.9763582E — 03 4.07E - 01 —9.8294725E — 04
1.07E — 01 —7.0779877E — 03 5.57E - 01 —7.0829002E — 04
1.29E - 01 —5.7627623E — 03 6.32E — 01 —6.1933463E — 04
1.51E-01 —4.1978101E — 03 7.83E — 01 —4.9170901E — 04
1.77E - 01 —2.0415078E — 03 9.34E — 01 —4.0454777E — 04

Ap = (Ahy, Aly) = (1.0 x 107* pm, 1.0 x 107* um).

The obtained parameters when the convergence is achieved are given in Table 2.

The second case: The initial values prescribed to the parameter are p*) = (hy, Ey, hy, E>) = (9.0 pm, 250
GPa, 250 GPa, 0.4 pm).

The perturbing value of the parameter, or the interval, used by the finite difference in calculating the
Jacobian matrix, J, is given as

Ap = (Ahy, AEy, Ahy, AE>) = (1.0 x 10 pum, 0.5 GPa, 1.0 x 1074 um, 0.5 GPa).

The obtained parameters when the convergence is achieved are given in Table 3.
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Table 2
The estimated parameters for the first case
Status Parameters
hy (pm) hy (pm)
True 9.2 0.2
Initial 9.0 0.4
Estimated 9.20139 0.1986
Table 3
The estimated parameters for the second case
Status Parameters
i (um) E; (GPa) hy (pm) E, (GPa)
True 9.2 206.0 0.2 150.0
Initial 9.0 250.0 0.4 250.0
Estimated 9.20252 209.732 0.19751 153.319

It can be found in the second case that the accuracy of the estimated thickness is higher than that of
Young’s modulus. The phenomenon is due to that the more constraints are prescribed to the thickness
parameters. It is found that the choice of the initial parameters is fundamental importance in the present
model. If the initial parameters deviate too far from the true parameters, the estimated parameters are
eccentric.

4.2. Model B

This model is about a four-layer medium indented by a cylindric indenter (Fig. 6). Analogously to the
conditions described in the Section 4.1, the four-layered medium is placed on a rigid foundation, and that
means that the bottom surface of the medium is simply supported in the view of the mechanics. The top
three layers are very much thinner than that of the bottom layer. The specified displacements take at a set of
points on the top surface of the layered medium. The element discretization used in the present boundary
element method is shown in Fig. 7. The radius of the cross-section of the cylindrical punch is » = 1.0 pm
and its Young’s modulus is 1000 GPa. The parameters to be determined are

p= (hi,E\, hy, Es, h3, Ex, ha, Ey).

yer4: E h,

Layer 3: E; h4
yer 2: E, h,

r[éyer 1: Eh,

Fig. 6. A four-layer medium indented by a cylindrical body.
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Fig. 7. Quadratic element discretization used for model B.

The true value of the parameters is
p = (9.2 pm, 206 GPa, 0.2 pm, 250 GPa, 0.2 um, 200 GPa, 0.2 um, 150 GPa).

Twenty constraints are given in the following table as:

C]ZE1>O C5:E3>0
CZZEllnaxfEH}O C6:Er3nax7E3>o
c3=E,>20 c;=E4=0
C4:Eglax—E2>0 Cg:E:‘“aX—E4>0
C9:h1>0 Clszhgnax—hg,ZO
C]():hrlnax—h1>0 cig=h —h3 =0
6‘11:]’!220 017:}’420
co=m"—h=0 cig=hy™ —hy =0
c3=h —h =20 clo=h —hy =20
cu=h;=0 co=h—h —hy—h3—hy =0
where

EP = R = EI = EI = 300 GPa, h = K™ = 9.4 um,

and A9 = AP =A™ = 0.4 pm. It is obvious that all of the above constraints are linear constraints. The
load condition is to prescribe a pressure, p = 1 mN, to the top of the cylindrical punch, and the convergence
criterion are y = ¢ = 1.0 x 107*. Similarly to the procedure in Section 4.1, the model is first analyzed by the
conventional boundary element method with the true parameter. Totally 14 points are specified and they
locate on the top surface of the four-layer medium. Their radial coordinates and normal displacements,
which are the elements of the vector u* = (uj,u},...,u;,), are given in Table 4.

The perturbing value of the parameter p is the same as the one given in the model A.

A set of ideal result, which are optimized the presented algorithm with numerical tests, is given in
Table 5.

The accuracy of the estimated Young’s modulus is not better than that of the thickness and it can be
improved by giving more constraints to Young’s modulus.
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Table 4
The radial coordinates (um) and normal displacements (um) of the specified points
R coordinate Displacement R coordinate Displacement
0.00 7.5108915E — 03 0.35 7.4550417E — 03
0.05 7.5097694E — 03 0.40 7.4376211E — 03
0.10 7.5063930E — 03 0.45 7.4176381E — 03
0.15 7.5007440E — 03 0.50 7.3950121E — 03
0.20 7.4928233E — 03 0.55 7.3695458E — 03
0.25 7.4825864E — 03 0.60 7.3410917E — 03
0.30 7.4700163E — 03 0.65 7.3092886E — 03
Table 5
The estimated parameters for the second case
Status Parameters
hy (um) E; (GPa) hy (um) E, (GPa) h3 (pm) E; (GPa) hy (pm) Ey (GPa)
True 9.2 206.0 0.2 250.0 0.4 200.0 0.2 150.0
Initial 9.0 250.0 0.33 250.0 0.33 250.0 0.33 200.4
Estimated 9.20311 210.732 0.19842 248.319 0.38904 207.570 0.20943 155.277

5. Discussion and conclusions

An algorithm to solve the inverse problems about the estimation of material properties of the multi-
layered media was developed. The present method combines a particular boundary element method and a
modified Levenberg-Marqardt method. The estimation of the parameters of two ideal models was inves-
tigated. Although the algorithm is easy, the estimated results may be conquered by many factors, such as
the constraints, the initial value prescribed to the parameters, or the error of the data and so on, because the
inverse problem is ill posed. The estimated parameters of two investigated ideal models are obtained with
many constraints and the values of the initial parameters in the neighborhood of the true parameters.
Eccentric results were produced when the constraints were few or the initial parameters were far from the
true ones. The more parameters are considered, the more difficulty is yield to guarantee the uniqueness of
the solution. The effect of the data error was discussed by Schnur and Zabaras (1992). The present method
is efficient and may be applied to solve some indentation problems, if a good pro-estimation is made in
advance.
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Appendix A

The matrix Ty (hy) was obtained as
Ty (hy) = Xn () Xy (1) X1 (Ay-1) - X5 ()X () XT(0), (A.1)

where the matrix X, (z) is
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di sinh(az)  di cosh(az) ¢ cosh(az) — 20z sinh(oz) ¢ sinh(oz) — 2acyz cosh(az)
—dy cosh(az) —dj sinh(az) ¢ sinh(az) + 20z cosh(oz) ¢, cosh(oz) + 2aciz sinh(oz)

—sinh(az)  —cosh(oz) cosh(oz) + Z3inh=) sinh(oz) + 2”%:’51‘(“) (A.2)
COSh(OCZ) Sll’lh(O(Z) SlIlh(O(Z) — M%i’sh(‘“) COSh(OCZ) _ 20¢z ;:{nh(ocz)
and
Ero Eo
o = : Y k=1,2,3,...,N.

— di=—
T+v)B—4v)" * 1+w

The matrix B; was obtained as

2y Ey o 0
B, = [ =% T—vg K A3
¢ 0 0 —fo 0 (A3)
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